MAXIMIZING ALFALFA'S YIELD POTENTIAL

or

Is Yield Improvement Possible in Alfalfa?

E. Charles Brummer¹, Matt Francis^{1,2}, Charles Janssen¹, Cree King¹, Michele Nalle¹, Scott Newell³, Kreingkrai Nonkum¹, Dan Putnam^{1,2}, Ali Montazar⁴

¹University of California, Davis, ²DLF Seeds, ³University of Wisconsin, ⁴UC Cooperative Extension

Rustici Rangeland and Cattle Research Endowment

Tulelake, CA

Breeding Programs see yield improvement

Commercial Production _ On-Farm Yield Trend

of improved cultivars

realized yield gain

BLUPs with SpATS – $H^2 = 0.62$ Spatial Analysis of Field Trials with Splines

Ranks of

selections

2. Sensor Based Phenotyping

More data in less time – increase population sizes

3. Genomic Prediction

Francis et al., in prep.

The only way to improve alfalfa yield is to reduce dormancy.

Bill Knipe, FGI Alfalfa Breeder

This is a paraphrase; Bill might have asked, rhetorically, "Is the only way to improve yield to reduce dormancy?"

Enhancing Alfalfa Yields and Stand Life by Improving Management of Seed Rot and Seedling Damping-Off

Leta J. Larsen^{1,} Melinda R. Dornbusch², Carla Hines-Snider³, and Deborah A. Samac² ¹ Department of Agronomy and Plant Genetics, University of Minnesota ² USDA-ARS, Plant Science Research Unit ³ Winfield United

Issue: "Killer" soils in which current seed treatments do not provide adequate protection for stand establishment

Question: Are there newer products to substitute or extend the activity of Apron/ApronXL?

In vitro tests of commercial fungicides

	Fungicide	Pythium (6)	Aphanomyces (4)	Phytophthora (3)	Fusarium (3)
\bigstar	ApronXL	E-VG	Р	Е	Р
	Rancona Dimension	E-VG	Р	E	E-VG
	Rancona Summit	E-G	Р	Е	VG
	Rancona V RTU FS	E-VG	Р	E	VG
	Trilex	Р	Р	Р	Р
	Dynasty	G-F	G	G-F	Р
\bigstar	Evergol Energy	E-VG	G	Е	G-F
	Vibrance	Р	Р	Р	Р
\bigstar	Intego Solo	VG	Е	E-V	Р
	Rizolex	ND	ND	ND	F-P

EC 50 values

Excellent (E)= <0.05-0.1 μ g/ml, Very Good (VG) = 0.11-0.99 μ g/ml, Good (G) = 1.0-9.9 μ g/ml, Fair (F) = 10-99.9 μ g/ml, Poor (P) = >100 μ g/ml. ND= not determined.

Single pathogen bioassays with treated seeds

Pythium assay: ApronXL and Evergol Energy similar

Phytophthora root rot (PRR): Evergol Energy effective but less than ApronXL

1= control 2 = Evergol Energy 3 = Apron + Stamina 4 = Apron + Stamina + Intego Solo 5 = Apron + Stamina + Intego Solo + Maxim

How effective are treatment mixtures on a small seed?

Aphanomyces root rot (ARR race 2): Stamina effective

Soil bioassays

- Three locations with varying disease pressure
 - A: ARR and Ph. sansomeana
 - B: ARR race 2
 - C: ARR and Pythium
- Soil removed from the field
- Tested with treated seeds
 - Soil saturated 3 days after plant emergence
 - Rated 21 days after planting
- No treatment was highly effective
 - No significant differences from control untreated seeds

Field experiments in 3 locations with treated seeds

Conclusions:

- Treatments had only modest effects in field soil and field environments
- Evergol Energy (prothioconazole, penflufen, metalaxyl) could be used to replace
 Apron/Apron XL for early season protection against *Pythium* spp. and PRR, with some ARR activity
 - Some protection for cultivars susceptible to PRR
- Genetic resistance to *Pythium* spp. and enhanced resistance to ARR race 2 would provide season-long protection
- Improve seed coating technology with use of multiple products to obtain effective concentrations of active ingredients